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MULTIVARIABLE FLIGHT CONTROL SYNTHESIS AND
LITERAL ROBUSTNESS ANALYSIS FOR AN AEROELASTIC VEHICLE*
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Abstract

The vehicle to be augmented is representative of a large supersonic transport,
with first fuselage aeroelastic mode frequency at six rad/sec, very close to the
two rad/sec short-period mode. An integrated flight- and aeroelastic-mode
control law is synthesized using a previously developed model-following
synthesis approach. This technique, designed to yield a desired closed-loop
rather than an open-loop loop shape, involves a specific LQR formulation
leading to the model-following state-feedback gains. Then the use of
asymptotic loop transfer recovery is utilized to obtain the compensation that
recovers the LQR robustness properties, and which leads to an output-
feedback control law. A classically designed control law is also developed for
comparison purposes. The resulting closed-loop systems are then evaluated
in terms of their performance and multivariable stability robustness,
measured in terms of the appropriate singular values. This evaluation
includes the use of approximate literal expressions for those singular values,
expressed in terms of literal expressions for the poles and zeros in the vehicle
transfer-function matrix. It is found that the control laws possess roughly
equivalent performance and stability robustness, and the characteristics
limiting this robustness are traced to some specific loop gains and the
frequency and damping of the open-loop aeroelastic mode dipole.
Furthermore, closed-form literal expressions for these characteristics are
presented in terms of the stability derivatives of the vehicle. Insight from
such an analysis would be hard to obtain from a strictly numerical procedure.

* As Presented at the 1990 AIAA G.N.&C. Conf., Portland Or., Aug.,1990.
** Professor of Engr.; Assoc. Fellow AIAA

*** Research Assoc.; also Doctoral Candidate, School of Aero and Astro,
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1. Introduction

The supersonic and hypersonic capabilities of advanced aerospace
vehicles and the use of extremely light metallic or composite materials in
them can lead to vehicles with significant dynamic coupling between the
rigid-body and elastic motions. Ref. 1 and 2, for example, specifically
addressed this coupling at the earliest stage of system modeling and flight-
control synthesis.

Augmentation of an aeroelastic vehicle's open-loop dynamics via
feedback is often necessary to provide sufficient levels of stability and
performance (e.g., handling qualities). Feedback is used to stabilize the
attitude and or aeroelastic responses (such as static aerodynamic instability or
flutter) or just augment damping. Crossfeeds may also be used to improve the
dynamic responses. And the control-law must ensure this stability and
performance in the presence of vehicle modeling errors (i.e., robustness). For
aeroelastic vehicle applications, modeling errors can arise from uncertainty in
the aerodynamic model and neglected high-frequency structural modes both
leading to uncertainty in the pole/zero locations in the vehicle transfer
functions, for example.Such control objectives have been noted in the
literature3-9.

If possible, the vehicle model (used in control synthesis) should aid in
the understanding and thereby provide insight regarding the vehicle physics,
exposing key dynamic characteristics and their causes. This can be achieved by
developing literal expressions for the vehicle transfer functions (gains, zeros,
and poles) in terms of vehicle model parameters, such as stability and control
derivatives or vibrational characteristics, which have their genesis in the
fundamental vehicle geometric shape and structural layout.29.10 Models of
this type can be an extremely powerful tool in open-loop or closed-loop
design.11 -

The control synthesis for an aeroelastic vehicle, and the systems’
analyses specifically using a literal model, is the subject of this paper. An
aeroelastic vehicle model is briefly presented and deficiencies in the vehicle
dynamics are noted. Control objectives are stated and sufficient conditions
ensuring an acceptable design are given. A new approach to implicit model
following (IMF) control synthesis1213 is briefly discussed and applied to the
vehicle model. A classical control synthesis approach is also considered for
the purposes of comparison. The resulting compensators and closed-loop



systems are analyzed with a literal model to expose sources of system
characteristics that limit the closed-loop system stability robustness. It will be
shown, for example, that major among these critical characteristics are the
frequency and damping of the vehicles first aeroelastic mode dipole, and
closed-form expressions for these terms are presented in terms of the vehicle
stability derivatives.

2. The Vehicle Model For Feedback Synthesis

The configuration to be considered (from Refs. 2 and 10) is a large
supersonic aircraft of reasdnably conventional geometry with a low-aspect
ratio swept wing, conventional tail, and canard. Controlled inputs consist of
elevator &g and canard (located near the cockpit) deflection 8- . The
reference flight condition is level flight at Mach 0.6 and altitude 5,000 ft.

The complete non-linear modelling of this vehicle was the subject of
Ref. 2, and the development of low order linear models for control synthesis
was considered in Ref. 10. A fourth order state space realization and the
corresponding transfer functions for this linear model are given in Tables 1
and 2. This model involves the small perturbation longitudinal dynamics of
the effective short period and first aeroelastic modes. The responses of
interest are the rigid-body angle of attack «, rigid-body pitch rate g, and pitch
rate ' measured at the cockpit. Here, rigid-body o and q are the angle of
attack and pitch rate associated with the vehicle mean axes. An approximate
measurement of q can be obtained from a rate gyro located at the anti-node of
the first elastic structural mode, and then lowpass filtering of the higher-
frequency modes. The effects of such filtering will not be specifically
addressed, but it would add additional phase loss in the loops, which is
considered in the robustness analysis

A fourth-order model was developed to accurately approximate the
appropriate frequency responses of a twelfth-order model, in the anticipated
critical frequency range of 1 to 10 rad/s. Figures 1 thru 3 show some of these
frequency responses from | elev;to;;;\};ug SE . (It is noted that the next
significant unmodeled aeroelastic mode frequency is above 13 rad/sec.) From
Table 2 and Figures 1 thru 3, the major open-loop dynamic deficiency is the
level of damping of the short period and aeroelastic modes. Furthermore, the
aeroelastic mode contributes significantly to the vehicle's dynamic responses.



3. Classical Control Synthesis

A classical design approach consists of sequential single loop closures,
using root loci, and relying upon knowledge of the physics of the elastic
aircraft for synthesis strategy.

Consider a 2 x 2 system from Table 2 with the following notation.

q(s) = g11(s)8g(s) + g12(s)d(s) (1
q'(s) = g1 (s)Bg(s) + go2(5)0(s)

First, the q'/8¢ loop is closed to improve the aeroelastic mode damping.
Recall q' and 8 are a co-located sensor and actuator pair near the cockpit. The
control law &¢ = 8¢' - kynq' yields

k22812871 k22822 .
4= (811715 kypg,y OF * 8121 T kzzgzz)sc @
. 821 g2 .

= T kpgy & ¥ T+ kg OC

na
The root locus for 1 + kzsz , where n;; and d are the numerator and

denominator polynomials, respectively, of g, is shown in Figure 4. A gain of
ko, = 0.05 rad/rad/s increases the aeroelastic mode damping by over 60% of
the open-loop value.

An elevator-to-canard crossfeed is now introduced to reduce aeroelastic
mode excitation from the elevator. Interconnecting "up canard” with "up
elevator" will reduce aeroelastic mode deflections from the elevator because
the fuselage mode shape? is similar to the fundamental bending mode shape
of a slender beam.

The crossfeed 8¢’ = kO yields

g11 + koo(g11822 - 812821) + Ker 812

This can be simplified with the identity?

g1 812
} 4)

he
det [G] = det[ = - = X
g1 82 811822 - 812821 = 7§



where v is the transmission zero polynomial corresponding to the plant in
Eq. (D).

yc(s) = 89(s + 0.081)(s + 0.46) (5)

Substitution of Eq. (4) into Eq. (3) yields

Dy + KW + ke Ny
- d+ k22n22

(6)

It is now evident the crossfeed has the effect of moving the zeros of the
q/8g transfer function (with the q'/8¢ loop closed) from nj; + kypyg to nyp .

n
The root locus for 1 + k¢ 12
Ny + KooWg

rad/rad results in almost perfect pole-zero cancellation for the aeroelastic
dipole in the effective q/dg transfer function.

is shown in Figure 5. A gain of k¢ = -1.5

Finally, the effective q/8g loop is closed to further improve the short
period damping. The control law &g = pd - ky;q yields

_ p(g11 + k(811822 - 812821) + K 812)
U= T+ kpogy + ki1(g11 + koo(811822 - 812821) + Ket 812)

(7)

where p is the gain on the pilot input 8. The root locus for

Ny + kWi + Kef Ny
d+ kzznzz

loop pole locations for a gain of ky; = -0.05 rad/rad/s.

1+ky; is shown in Figure 6, as well as the final closed-

With some block diagram manipulation, the closed-loop system can be
represented as in Figure 7. Table 3 contains the effective closed-loop transfer
functions corresponding to the pilot command 8, while Figures 1 thru 3 show
the corresponding frequency responses for the augmented vehicle. Short-
period damping has improved from &g, = 0.36 (see Table 2) to (s, = 0.54 (a 50%
increase), while the first aeroelastic mode damping has improved from {; =
0.073 (see Table 2) to { = 0.12 (a 64% increase). These improvements are

apparent in the closed-loop frequency responses.

Significant improvement in the rigid-body (a and q) frequency
response shapes is also achieved. Besides improved short period damping,
the aeroelastic mode pole-zero "saw tooth" located near 6 rad/s in Figures 1



and 2 are virtually eliminated when compared to the corresponding open-
loop behavior. This is a result of improved closed-loop pole-zero
cancellations (see Table 3) as desired in the classical control synthesis. Or the
aeroelastic mode has been rendered undisturbable from pilot input.

4. IMF Control Synthesis12.13

A newly developed technique for the synthesis of flight-control laws
will now be outlined. Although LQR and LTR concepts are used in the
formulation of the algorithm, this approach is fundamentally different from
LQG/LTR methodology4. LQG/LTR addresses the problem of obtaining
specified open-loop shapes, while the approach taken here is to synthesize a
control law that yields a desired closed-loop shape.

The system to be controlled is represented as

x(t) = Ax(t) + Bu(t) (8)
y(t) = Hx(t)

and the model of the desired dynamics to be followed is

gn(t) = A x,(t) + B,8(1) 9
Ylt) = Hpx (0
8=-100.%

where 3 represents the input from the pilot. The error vector
e(®) =y®) - yu(t) (10)

is constrained to be governed by stable, homogeneous dynamics

é(t) = -Ge(t) (11)

where G is to be selected in the synthesis process. The model-following
control law is obtained by solving the LQR problem with the following
objective function.



J= J ; [(e +Ge)TQ(é +Ge) + uTRu] dt (12)

If the product HB is square and invertible, and the same for H,B, , and if G is
chosen as G = - H, A H,-1, then perfect model following is achieved
asymptotically as R in Eqn. 7 approaches the null matrix. If this is the case,
then the closed-loop poles approach the model poles (for G as defined above)
and any open-loop plant finite transmission zeros (or their stable mirror
image).12

The solution to this problem is the first step of the control law synthesis,
yielding the state-feedback control law

u=Kx +K;sd (13)

For the elastic aircraft model in Table 1, rigid-body angle of attack and
pitch rate, o and q, are the responses selected for model following, so that the
handling characteristics will be improved. Also it is desirable that the
response approximate that of a rigid vehicle. With this selection, the open-
loop plant transmission zeros are located at -23. 1/s and 35. 1/s, and HB is
square and invertible.

The model of the desired dynamics is chosen to be

o, (s)/8(s) =-3.5/(s + 0.89 £j0.91)
qm(s)/8(s) = -3.3(s + 0.36) /(s + 0.89 £j0.91)

Note that the short-period mode is well damped. With this selection, Hy, is
square and also invertible. The short-period poles will approach those of the
model, the aeroelastic mode poles will move toward the plant transmission
zeros (or their stable mirror images via the optimal control formulation), and
the o and q time and frequency responses will be shaped to better approximate
those of a rigid vehicle.

With the state feedback gains K and Kj so determined, compensators
will now be synthesized using the loop transfer recovery procedurei’.13,
which will then yield the output-feedback loop structure in Figure 9.
Although the a and q responses were those used in the model-following step,
they are not the measurements to be used for feedback. The feedback
measurements are the same used for the classical design, q' and q. This



selection leads to minimum phase transmission zeros, for the loop-transfer
recovery, located at -0.081 and -0.46 1/s.

Figure 8 shows the resulting feedback compensators, prefilter stick
gains, and closed-loop structure after the loop-transfer recovery procedure is
completed, and some straight-forward pole-zero cancellations are performed
on the compensators. Note the compensators consist of relatively simple
lead-lag and lag-lead filters of second order. Table 3 contains the effective
closed-loop transfer functions corresponding to the pilot command 3, while
Figures 1 thru 3 show the corresponding frequency responses. Short period
damping has improved from {, = 0.36 to (s, = 0.45 (25% increase) while the
first aeroelastic mode damping has improved from {; = 0.073 to G, = 0.12 (64%

increase).

These improvements are also apparent in the closed-loop frequency
responses. Besides improved short-period damping, the aeroelastic mode
pole-zero "saw tooth" located near 6 rad/s in the angle-of-attack and pitch-rate
responses in Figures 1 and 2 is reduced by roughly 10 db, when compared to
the corresponding open-loop response. This is a result of improved closed-
loop pole-zero cancellations (see Table 3) as desired in the IMF control
synthesis (i.e., following a rigid-body model).

5. Robustness Analysis

Now consider the generic feedback loop structure in Figure 9, which is
a generalization of the closed-loop systems in Figures 7 and 8, with response
vector y, control inputs u, commands y. , and plant, compensator, and
prefilter transfer function matrices G(s), K(s), and P(s), respectively. The
feedback compensation in Figure 9 is assumed to be synthesized with a design
model G(s), but the "true" plant transfer function is taken to be G'(s).
Specifically, consider generic phase loss in each input channel to the plant, or
let

G'(s) = G(s) (e-7¢1) (14)

This phase loss can represent, for example, unmodeled high-frequency
dynamics originating from structural modes, actuators, sensors, etc.
Rewriting G'(s) as



G'(s) = G(s)(I + E(s)) (15)
it can be shown that
E(s)=(e-%s- DI (16)

where E(s) is the so called plant input multiplicative error.4
The "true" closed-loop system poles are roots of the "true”
characteristic equation, obtained from

det[I + K(s)G(s)I + E(s))] =0 17

If the nominal closed-loop system is stable and the required number of
encirclements of the critical point in Nyquist stability theory is the same for
both nominal and "true" systems, then a sufficient condition, developed
from Eq. (17), guaranteeing closed-loop stability under E(s)4 is

SE(jw)] < ofl + K({o)GGjw)1] , 0w (18)

Eqg. (18) is an indication of the system's multivariable stability robustness
margin.

Figure 10 indicates the stability robustness of the classically designed
closed-loop system, with the effect of multiplicative error due to generic
phase loss in each input channel displayed as well. Note from Figure 10 the
characteristic limiting the stability robustness is the dip in gfI + (KG)-1] near 6

rad/s. In fact, the phase loss allowed using this criteria is limited to 1 < 0.3 s.

Figure 11 indicates the stability robustness propertieé of the IMF design,
again with the effect of generic phase loss displayed. Note again a similar
characteristic limiting the robustness of this loop. Here the allowable phase
loss is 1 £ 0.35 s, only slightly better than the previous result.

The question now turns to the causes for this limiting characteristic.
Literal expressions for the vehicle transfer function poles and zeros in Table 2
are available from Ref. 10 fpr further analysis. Before this, however, a literal



expression for gfI + (KG)1] is necessary. The approach to be taken here is

similar to that presented in Ref. 11.
With reference to Figure 9, consider a 2 x 2 closed-loop system with

ki1 kg2 g1 812 a; a2
Kljo) = ky; kpp J’ Gl = g1 gnl’ [+ KGo)GGw)? = a axp 19
1

where

k21812 + k2282
A

k11812 + k12822
A
ky1811 + K281

ay =- A

k11811 + k12821
A

A = det [KG] = [kq1kg; - kioka] (811822 - 812821]

a]1=1 +

a2 =~

(20)

322=1 +

The minimum and maximum singular values of I + (KG)-! are given as

oll + (KG)1) = A1/2 [(T + (KG) ')A + (KG)1)*] 21)
ol + (KG)1] = A/2 [T + (KG))( + (KG)1)*]

where A and A denote the minimum and maximum eigenvalues,

respectively. A and A solve

det{Al- (I + KG) DI + KG) D) T=A2-(L+ MDA +Ah =0 (22)
where

D+ K= lag 124 lagy 2+ lag |2+ lay 12 (23)
M = lajjap - appay |2

If A « A, then from Eq. (23) A is approximately given as

10



2 laj 2 - aypay |2
27 1ay 12+ lagp 12+ lay 12+ lay, 12

(24)

or
lajjag - ajpay |
124 Tagy 12+ Tay 12+ Tagy 12172

&5[1 + (KG)-l] = ( I a, (25)

From inspection of Figures 10 and 11, it can be seen that the condition A « x
(or g « ©) is reasonably satisfied.

Substitution of Eq. (20) into the numerator and denominator of Eq. (25)
yields

tajjap, - appay | = I%' 11+ k1811 + k1281 + k812 + kapgo + A (26)
la;; 12+ lagp |2+ lay 12+ layy 2= | %IZ-(Ik21g12+k22g22+AI2+
K181z + kaogon 12+ | k91811 + koog1 12+ Tky181 + kpagoy + A 12)
These can be further simplified with the following observation’

Ol

ol

1+ kngl] + k12g2] + kZIglz + k22g22 + A =det [I + KG] = (27)

A = det [KG] = X¥6G

ol
where ¢ and ¢, are the system's closed-loop and open-loop characteristic

polynomials, respectively, and yg and y are the compensator and plant
transmission zero polynomials, respectively. With the notation

Ny n

i & -
l]gpq =—$;~E ’ 1:]:prq = 1r2

k
where Ny, and ng_are the numerator polynomials of k;; and g, ,respectively,
Pq

substitution of Eqgs. (26) and (27) into Eq. (25) yields the following literal
expression for ofI + (KG)-1].

l6g|
1112+ Ingp 124 Ingy 124 [ny, 12)172

Q[I + (KG)'l] = ('n (28)

11



= nknngu + nkzzngzz + VxV¥e
N2 = nknngu + nkungzz
N1 = nkzlngu + L

N2 = nkungn + nkungz: + VkVe

Observe that the "zeros" of ¢[I + (KG)-1] are nothing more than the
closed-loop poles, while the "poles” of g[I + (KG)-1] depend on the plant's and
compensator's transfer-function zeros as well as their transmission zeros.
This result was first noted in Ref. 11, but the transmission zeros yyyg were

related to the so called coupling numerators.
Now consider the classically designed closed-loop system shown in

Figure 7. Here

g11 = q(s)/ (s) kjp=n =8/q
g12 = q(s)/dc(s) kjp=my =0
821 = q'(s)/ g(s) ky1 =1y =8¢c/q
gn = q'(s)/ SC(S) kyy = My, = dc/q
ye(s) = 89(s + 0.081)(s + 0.46) Yk = Kq1kos - kyokyy

with g;; available from Table 2 and k;; available from Figure 7. Substitution of
the above quantities into Eq. (28) yields

| joo + 0.7041.1)(joo + 0.75j6.0) |
0.94 1 (jo + 0.22)(jeo + 3.13.8) |

oI+(KG)1] = (29)

It is evident that the augmented first aeroelastic mode poles, denoted

s2 + (20wl s + (@), =52 + 1.5 + 37 =5+ 0.75£ j6.0  (30)

and their low damping are responsible for the previously discussed critical
stability robustness feature near 6 rad/s in Figure 10.

From the classical design (see Section 3) and Figure 4, these poles are
primarily a function of the q'/8¢ loop closure. With increasing q'/8¢ root

12



locus gain kj, , these augmented aeroelastic mode poles originate from their
open-loop locations

s + (2Lo)g s + (@) =52+ 0.88s + 36 =5 +0.44£j6.0 (31)

and migrate towards their corresponding aeroelastic mode zeros in the q'/d¢
transfer function (see Table 2), denoted as

2+ (LaNFs + ¢ (@) =52+ 155 +89=5+073£29 (32

Yielding the closed-loop locations in Eq. (30) for the selected value of kj; .

From Ref. 10, the open-loop natural frequency and damping terms of
the aeroelastic mode poles and zeros in Egs. (31) and (32) are approximately
given by

y4
i
1+ M,

(@ = (er2-Frp) +

(0)12 - F]nl)
= 35 + 20
(33)
V4
Mo TN
(2Cw)g = (2500, - Fy) + (@y2-Fyy)
= 062  + 0.35
y4
5 (@2- Fin) M; M"h + 6,00 + \f;—)Ma
w2 = - 1
(@ Mg, - 67 00Fy_ 61'(x)
= 2.0 - (-65) (34)

Zy Z
] _g_ __l
Q6101 - F1a)Ms + 07 COMgF1, A Vr,)V'r1 MaF1g
Ms_ - 01'()Fy 5 (@2 - Fyq)Ms_
- 0.82 - (-0.67)

o -

with the following numerical values:

13



Z
=-0.416 ft/s2 (1+—1> 1.03

Vr.
ﬁ

=-0.00267 1/s M, =-333 1/s2

1
Mq=-0.830 1/s M, =-0.0655 1/s2
M =-0.00390 1/s M;_=0.809 1/s2
F;_=-1,040 1/s2 Fy =784 1/s
Fj, =-631 1/s2 (@2-Fyy ) =348 1/s2
(2400, - Fyyj ) = 0.621 1/5 6,'(x) = 0.021 ft/ft

The above parameters are functions of the flight velocity Vr ; rigid-
body and aeroelastic aerodynamic stability derivatives Z;, M;, and Fi‘ ; first in
vacuo elastic mode shape, vibration frequency ®; and damping ratio {;. These
vehicle parameters appear explicitly in the linear equations of motion for the
elastic aircraft!® listed below.

L _Z Zg, I Gy, Ly D
a=—aVT°‘ +(1+V—%)q+VTTh VTTh+VT O + 7 C8c:

1

q=Mga + Mgq + My 1y + My 7y + M 8¢ + M;, d¢ (35)
Ty =Fj 0 +F; q-(2-Fip) My - G0, - Fy )y + Fyg 8¢ +Fy 8¢
q=9-6,'M

As seen from Eq. (33), the frequency of the open-loop aeroelastic mode
poles is primarily due to the elastic mode structural frequency and
aerodynamic stiffness (i.e., (2 - Fin)). Also, the inherent low damping in
this mode is primarily due to the elastic mode structural and aerodynamic
damping (i.e., (20;@, - Fy; ) ). However, note also that approximately 1/3 of
the total damping is due to aerodynamic coupling between the rigid and
elastic degrees of freedom. It is now clear which key vehicle and compensator
parameters contribute to the critical stability robustness properties of this
closed-loop system.

Now consider the IMF design closed-loop system shown in Figure 8.
Here

g11 =q(s)/ dgls) kq1 = 8g(s)/q(s)

14



812 = q(s)/dc(s) kqp = 8g(s)/q'(s)
go1 = q'(s)/dg(s) k9q = 8c(s)/q(s)
€22 = q'(s)/ dc(s) kyy = 8(s)/q'(s)
ye(s) = 89(s + 0.081)(s + 0.46)  wy(s) = 0.00091(s+0.060)(s+0.35+j0.21)(s-1.9)

with g;; available from Table 2 and k;; available from Figure 8. Substitution of
the above quantities into Eq. (28) yields

1w + 0.56 +j1.1)(jo + 0.73 £j5.8) |
0.66 | (j + 0.83 £ j1.0)(jw + 4.6) |

al + (KG)1] = (36)

It is evident that again the augmented first aeroelastic mode poles

s2+ (20wl s + (W) =52+ 1.5s +34 =5+ 073 £j5.8

and their low damping are responsible for the critical stability robustness
feature near 6 rad/s in Figure 11. From the IMF design (see Section 4), these
poles originate at their open-loop location and migrate toward the
transmission zeros (or their stable mirror image) defined through the model-
following formulation, as the control weighting in the loss function is
reduced (or the loop gains are increased). Although literal approximations for
these transmission zeros are still being developed, the above expressions for
the open-loop aeroelastic poles again reveal the major source of these critical
characteristics.

6. Conclusions

An integrated flight- and aeroelastic-mode control law was synthesized
for a very flexible supersonic vehicle, using a previously developed model-
following synthesis approach. This technique, designed to yield a desired
closed-loop rather than an open-loop loop shapes, involves a specific LQR
formulation leading to the model-following state-feedback gains. Then the
use of asymptotic loop transfer recovery is utilized to obtain the
compensation that recovers the LQR robustness properties, and which leads
to an output-feedback control law. A classically designed control law was also
developed for comparison purposes, and parallels between the results
obtained with the two approaches are observed.
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The resulting closed-loop systems were evaluated in terms of their
performance and multivariable stability robustness, measured in terms of the
appropriate singular values. This evaluation utilized approximate literal
expressions for those singular values, expressed in terms of literal
expressions for the poles and zeros of the vehicle transfer functions. It was
found that both control laws possessed equivalent performance and stability
robustness, and the characteristics limiting this robustness were in both cases
traced to some specific step in the synthesis process, as well as the locations of
critical open-loop poles and zeros (or transmission zeros). Furthermore,
closed-form literal expressions for these characteristics were presented in
terms of the stability derivatives of the vehicle. The insight gained from this
analysis is considered invaluable to the control system designer, and
unavailable from strictly numerical analysis.
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x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
o (rad)J [SE (rad)}
y=|q (rad/s) |, u=
q (rad/s) S¢ (rad)

0517 3.85 0150 4.24
( 939 -0318 -0523 -4.67-'

A=L 0.0438 0.0164 -0.0128 -2.06 J
-0.0591 -0.0165 0.764 -0.986

-292. -182.
l--598. -424.‘|
B =l_ 53.7 -31.2J
-384 177

[:0.000480 -0.0000247 -0.0188 -0.0286

C=| 0.00147 0.00170 -0.0264 0.0549

-0.0222  -0.0213 -0.0372 0.0687




Table 2. Elastic Aircraft Transfer Functions

afs)/ 8g(s) = -0.036(s - 0.018 + j4.9)(s + 150.)/d(s) rad/rad
q(s)/85(s) = -5.0(s + 0.36)(s + 0.11 £j4.9)/d(s) rad/s/rad
q'(5)/85(s) = 15.(s + 0.040)(s - 2.9)(s + 4.0)/d(s) rad/s/rad
ls)/8c(5) = 0.0044(s + 1.8 +19.0)(s + 200)/d(s) rad/rad

q(s)/8c(s) = 0.80(s + 0.33)(s + 1.3+j9.1)/d(s) rad/s/rad

q'(s)/0c(s) = 15.(s + 0.056)(s + 0.73 £j2.9)/d(s) rad/s/rad

——— —— ———————— —————— — ] _— ——— _——————————



Table 3. Closed-Loop Transfer Function

Classical Control Svnthesis

a(s)/(s) = 3.7(s + 0.70 £ j5.9)(s + 160)/d(s) rad/rad
q(s)/d(s) = 0.025(s + 0.35)(s + 0.71 +£j5.9)/d(s) rad/s/rad

q'(s)/d(s) = 5.1(s + 0.049)(s + 1.0 £j6.6)/d(s) rad/s/rad

where d(s) = (s + 0.70 £ j1.1)(s + 0.75 £ j6.0)

IMF Control Synthesis

a(s)/8(s) = -0.0062(s + 0.22 £j5.1)(s + 150)/d(s) rad/rad
q(s)/8(s) = -0.87(s + 0.36)(s + 0.34 £j5.1)/d(s) rad/s/rad

q'(s)/8(s) = 2.0(s + 0.042)(s - 3.6)(s + 4.5)/d(s) rad/s/rad

where d(s) = (s + 0.56 £j1.1)(s + 0.73 £ j5.8)
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Figure 1. a(s)/dg(s) And a(s)/8(s) Frequency Responses
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Abstract

The simplification of a high-order, literal model for large flexible aircraft is discussed.
Areas of model fidelity that are critical if the model is to be used for control law synthesis are
presented. Several simplification techniques, some new and some widely available, that can deliver
the necessary model fidelity are presented and applied to a model from the literature. The
techniques include both numerical and analytical approaches. An analytical approach, based on
first-order sensitivity theory, is shown to lead not only to excellent numerical results, but also to
closed-form analytical expressions for key system dynamic properties such as the pole/zero factors
of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle
vibrational characteristics and rigid-body and aeroelastic stability derivatives, thus providing
insight in the underlying causes for critical dynamic characteristics.
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Introduction 7

To simplify the dynamic analysis and control synthesis, or to ease computational burden in
simulation, simple low-order models of the vehicle dynamics are sought. These models, however,
must possess the requisite validity in modeling the vehicle characteristics significant in the
applicadon. If the model will be used in the synthesis of a feedback system, characteristics critical
in a feedback system must be well modeled. This is the first goal of this work, and techniques
capable of delivering valid models for multivariable control synthesis will be presented.

A second goal is related to the fact that the physics of the vehicle must be well understood,
and models which expose the underlining physical causes for critical dynamic characteristics of the
vehicle are desired. This is especially significant in light of the fact that many model reduction
procedures in the literature rely on numerical techniques and/or transformations which lead to a
model in a form such that the physics of the system are far from transparent in the new model
structure. Approximate literal expressions for the factored transfer functions are presented herein
that aid in understanding the physics of aeroelastic vehicles, and yet constitute model
simplifications as well.

Modeling For Dynamic Analysis and Control Synthesis

To accomplish the second goal, a literal model for the vehicle must be available, and the
development of such was the subject of Ref. 1. From the nonlinear, literal, time-domain model of
an elastic aircraft, the linearized small perturbation longitudinal dynamic equatons were developed
in the reference. Transformation to the frequency domain leads to the elastic aircraft model in
polynomial matrix form? given in Table 1, where elevator deflection &g and canard deflection
are the assumed inputs (for a specific configuration example to follow). Typically, vertical
acceleration &, or pitch rate q' at some location along the fuselage axis are measured responses of
interest yielding two additional response equations. This model governs the small perturbation
dynamics of the rigid-body degrees of freedom consisting of forward speed u, angle of attack o,
pitch angle 6, and pitch rate q, and the generalized elastic degrees of freedom 7, , corresponding to
the i'th elastic mode in the model. Parameters of interest appearing in Table 1 are trim velocity V7,
a,and q' sensor location relative to the vehicle center of mass x, stability derivatives X; , Z; , M;,
and Fij , elastic mode vibration frequencies w; and damping ratios {;, and elastic mode shapes &;(x)
and mode slopes &;'(x) at the sensor location.

Numerical values for the parameters in Table 1 are also available for the vehicle studied in
Ref. 1. This is a large supersonic aircraft, of reasonably conventional geometry with a low-aspect
ratio swept wing, conventional tail, and canard (i.e., similar in geometry to the B-1B but much
more flexible). The numerical model contains four free-free elastic modes (resulting in a twelfth



order model), and the a," and g’ sensor location corresponds to that of the cockpit. The in-vacuo
vibration frequencies are 6.3, 7.0, 10.6, and 11.0 rad/s (from Ref. 1), and are considered
representative for a large supersonié/hypcrsonic cruise vehicle with considerable flexibility. The
reference flight condition taken here is at Mach 0.6 and altitude 5,000 ft. By inclusion of only the
first four elastic modes of the structure, a model simplification has already occurred, the
implication of which will be discussed below.

Now consider a generic feedback configuration illustrated in Figure 1, representing the
flight and/or structural-mode-control loops, for example. It consists of the interconnected plant
(vehicle) matrix G'(s) = G(s) + AG(s) and controller martrix K(s), with excitations from commands
Y., and responses Y. All signals are multivariable, in general, and G'(s) and K(s) are transfer
function matrices.

Of paramount importance in control design is that any simplified model G(s) used in the
analysis and synthesis accurately reflects the stability robustness of the "true” closed-loop system,
where stability robustness here refers to the system's ability to maintain stability in the face of loop
uncertainties.” The genesis of this uncertainty could be due to parameter variations or unmodeled
dynamics in G and due to modeling simplification, specifically.

Stability of the "true" closed-loop system is determined by the zeros of the ("true") return
difference matrix determinant

det+GK+AGK)=0

Assuming the nominal closed-loop system (GK) is stable and the forward loop perturbation AG is
stable, the "true" closed-loop system is stable if

det (I + GK + eAGK)ls=je # 0

for all o, and all € 0 <& <1 or, equivalently, if (I + GK(jw) + eAGK(jw)) remains nonsingular for
allwandalleg, 0<e< 1.

It can be shown3 that a sufficient condition to guarantee the above is to require

6(AGK(jw)) < oI + GK(w))

for all @. Here ¢ and G denote the minimum and maximum singular values of a matrix,

respectively. Therefore, the key frequency ranges where stability robustness is potentially a
problem is where



6(AGK(jw)) = g(I + GK(jw)) (M

over the (physically) possible AGK.

For SISO systems, Eq. (1) is easily interpreted on a Nyquist diagram. The right-hand side
of Eq. (1) corresponds to the distance between a point on the nominal Nyquist contour GK(jw) and
the critical point at -1. The left-hand side of Eq. (1) corresponds to the distance between the above
point on the nominal Nyquist contour and the corresponding point on the perturbed Nyquist
contour, G'K(jw). Regions where these two distances are approximately equal define the key
frequency ranges. The concept generalizes to MIMO systems, and therefore, Eq. (1) defines the
only frequency ranges where stability robustness is potentially a problem, and certain frequency
ranges are more critical than others.

One frequency range pinpointed by Eq. (1) is of course the crossover frequency (i.e., the
frequency range where g(GK) = 6(GK) = 1) where relatively small variations in the loop GK can
be destabilizing. Moreover, it also includes frequencies where small changes in G can create large
AGK satisfying Eq. (1) (e.g., systems with near pole-zero cancellations within G in the vicinity of
the jw-axis).

Introduction of any simplified plant model into the loop alters the loop shape (e.g., open-
loop Bode) from the "true" loop shape. If a desirable3 loop shape is still achieved, however,
deviations from the "true" loop shape may occur in the high and low frequency ranges, and not
significantly affect the results of the design. At low frequencies, adequate loop gain (in GK) is all
that is required for acceptable command following/disturbance rejection. In the high-frequency
range, the loop gain (in GK) must have adequate "roll off™ for acceptable noise attenuation.
Consequently, an extremely accurate approximation of the "true” system (G') is frequently not
required in either the low or high frequency range as long as the two above criteria are met. This
again leaves the mid-frequency range or crossover region as the critical region that must be
accurately approximated by any simplified model. In summary, the primary modeling requirement
imposed by feedback synthesis applications is to achieve an accurate approximation for the
frequency response of the plant in the range of loop gain crossover, if the loop gain is large above
this frequency range and the loop gain is small below this range. Clearly, the control law K(s)
affects these loop gains and determines the crossover range. -

A measure of how well a simplified plant model G(s) approximates the "oue" plant model
G'(s) over the crossover frequency range (0] < ® < ®3) is the element by element frequency

response error. Let the frequency response error matrix be defined by

E(jw) = G'(jw) - G(jw) )



Each i-j element in E(jw) describes the frequency response error associated with the corresponding
element in G'(jw). For G(s) to accurately approximate G'(s) over the crossover frequency range,
each element of E(jw) and G'(Jw) must satisfy [E;Gu)l<IG'jjGw)! for all ®, ) < w < w3. This can
be visualized graphically by superimposing the frequency responses of each element of G'(s) and

G(s), and noting the differences between the two.

A matrix norm defined by the maximum singular value of the matrix E(jw) may also be
used to provide a measure of "smallness" for the error E(jw). Recall that the maximum singular
value of E is defined as

G (E) = A2(EE™)
where X denotes the maximum eigenvalue. It can be shown that this norm bounds the magnitude
of each element in E(jw), i.e. [Ejj(jw)l £ S(EGw)).

Let the largest value of G(E(jw)) over the crossover frequency range define a "crossover
frequency norm"

max - .
1<CD<0)20(E00))) (3)

IEGeMlcs =

and the value of this norm may be taken as a relevant measure of closeness between the true and
approximate model. Note that using the "ee norm", or

. max .,
IEGol o = O0<tr<oo o( E(jw)

would be far too conservative for our purposes here.

Order Reduction and Simplification
Some order reduction techniques that can lead to good approximations meeting the above
criteria will now be highlighted.

Frequencv-Weighted Internallv-Balanced Reduction’ - Assume the system in Table 1 is

described in state space form, or

x = Ax + Bu 4)
y = Cx + Du



Two frequency-dependent matrices of interest are

X(jw) = (jol-A)IB
Y(jw) = C(ol - A)

X(jw) reflects the system's input behavior, since each column is the state vector's frequency
response associated with the related input, whereas Y (jw) reflects the system's output behavior,

since each column is the output frequency response associated with the related state. The
controllability and observability grammians are related to X(jw) and Y(jw) by

X=2 f XG0)X Cioydo
2n J_

=1 [ Y60 Y wde
2n J_

Note finally that X(jw) and Y(jw) are ultimately related to the system's frequency response G(jw)
= CX(jw) + D = Y(jw)B + D.

By definition, the state directions t; and u; decompose X and Y into the following outer
product sums

n
X = z[iVCitiT
i=1

n
Y = ZUiViniT

i=1

where v; and v, are real nonnegative scalars, and where u;Tt; = 1 and uith =0 for all i#j. Itis

known® that the importance of the contribution from state direction t; to the input-output behavior
(i.e. frequency response) of the system is reflected by the relative magnitude of the product ve;vo;

where this product is the ith Hankel singular value of G(s), each of which is real, nonnegative, and
invariant to state-space transformation. The matrix product

n
XY = ZtivCiVOjuiT

i=1



shows that the state directions t; are eigenvectors of XY, and the products v¢;vo, are the

eigenvalues. In other words, state directions tj most significant to the system’s input-output
behavior have the larger values for vc;v;.

This leads to the so called internally-balanced reduction techniqueb. The reduced-order
model is obtained by using the state directions t; to transform the system 1o internally balanced
states and truncating the least important states, based on the relative size of the eigenvalues v¢;vg;.
As noted in Ref. 5, the reduced-order model will inherently lead to a good approximation in the
frequency range where the full order system's frequency response magnitude is large, but this may
not be the frequency range of interest (i.e., loop crossover may occur in another frequency range).

To correct this situation, frequency weighting has been incorporated into this approach>.7,
Consider a weighting filter

X, =AX,+ B.S
u =C“1Xw

which is well-attenuated outside the frequency range of interest. Let this filter be in cascade with

the original system. Decomposing the controllability and observability grammians for the cascaded

system leads to frequency weighted internally balanced states which can readily be reduced by

truncation as before. Table 2 from Ref. 5 summarizes this frequency weighted internally balanced

reduction. Note that frequency-weighted internally-balanced reduction can only be applied to

asymptotically stable systems or asymptotically stable subsystems of a larger system.>’
Truncation - Assume the system is in polynomial matrix form, as in Table 1, or

A(s) c(s)T [Z(s) B(s)
1(s) m(s) [z,(s)] = [b,(i)] U(s) (5)
Y(s) = M(s)Z(s) + m(s)z(s) + P(s)U(s)

Here Y(s) is the vector of responses, U(s) the vector of inputs and [ZT(s), z:(s)]T the vector of
system degrees of freedom. Assume that z(s) is a scalar, and then m(s) is also scalar; r(s) and
br(s) are row vectors; and c(s) and m(s) are column vectors. Define the notation AjlB; as the
matrix formed from the matrix A, but its it column is replaced by the jt column of B. Then using
the properties of the determinant of a partitioned matrix, along with Cramer's rule, yields



Zi(s) _ m det [A{IB; - cm1(rjby)]
Uj(s) m det[A - cm 1]
z(s) _ brdet[A - Bjb,Ir]
Uj(s) = m det[A - cm-I1)

where the (s) denoting functional dependence has been dropped for notational brevity.

Assume now that

where dim (Z(s)) = n. Then

and Z; and z, become

gn<m ; kl=1,..,n
Bjkrl <« br,-’ s kl=1,..,n ©6)
cinlb y<m ; kl=1,..,n

]
AjlBj- cm'l(rilb,) = AjlB;

J
A- ij,_'lr =A
A-cmilr=A
A

Zi(s) _ Zi(s) _ det [AjBj] )
Uj(s) = Uj(s) ~ det[A]
z(s) _
TUs(s) = /™

Note that Z;j(s)/Uj(s) is simply that obtained if the degree of freedom z; was truncated from the

model (or not included in the modeling from the outset).
Now (consistent with the model in Table 1), let m(s) = a,s2 + d;s + k; and b, (s) = b, (ar,
p] J

dr, k;, brj scalar constants), and consider a high-frequency approximation, or let Isl — ee, leading to

lb,j(s)/m(s)l — 0. In this case (or if rnrbrj = 0 in general), the approximate model is the well-known

truncated model

Y(s) = M(s)%(s) + P(s)U(s)

Zi(s) _ dedAB]
Tis) = detA]




This approximation will produce a model with the desired characteristics when assumptions (6) are
valid, and the crossover frequency is well above

Yk /a and /b Ja]

In the special case with the system transformed into modal coordinates (5) becomes

(sI-A) O N(s) B
= U
0 (I-A) [N,(s>] [BJ ©

Y(s) = M N(s) + MN(s) + PU(s)

with A and A, diagonal. Now assumptions (6) are clearly satisfied. Truncation of the modal
coordinates Ny will therefore lead to a good approximation in the frequency range well above the
magnitude of the associated eigenvalues (Ap). In fact, the transfer-function error resulting from

this order reduction is
E(s) = G'(s) - G(s) = M(sI - Ap)1B;

It can be seen that each element of E(s) will be small when Isl > IAr;l and
Isl > !(MrBr)ijl.

Residualization - Referring back to (5), and assuming the same structure for m(s) and
brj(s), consider now a low-frequency approximation such that Isl = 0, leading to b,j(s)/m(s) -
b,j/k,, a constant scalar. In this case, the approximation is the well-known residualized model

A q
Y(s) = M()Z(s) + me(s) Y (b, k) Uy(s) +P(s)U(s)

j=1

Z(s) _ detfAjB])
Uj(s) ~  det[A]

where dim(U(s)) = q. This model will have the necessary validity when assumptions (6) are
satisfied, and crossover frequency is well below \/Tk:/a

Again consider the special case where the system is in modal coordinates, and then
assumptions (6) are clearly satisfied. This residualized-mode model will therefore lead to a good



approximanon in the frequency range well below the magnitude of the associated eigenvalues (A;).

In this case, the ransfer function error is
E(s) = M(sI - Ap)-1B; + M{(Ly)1B;

It can be seen that each element of E(s) will be small when Isl << [Arl.

Approximate Literal Expressions - The transfer function matrix G(s) for the lower-order
model can be computed numerically using the previous methods. Attention will now turn to a
simplification technique, related to the technique in Ref. 2, which yields approximate, closed-form
literal expressions for the poles and zeros of the system transfer function (matrix).

The method is based on first order sensitivity theory, and can in principle be applied to a
model of higher order. The basic ideal is to obtain approximations for the factors of a polynomial
by approximating the coefficients of the polynomial by the first two terms of a Taylor series. To
keep the algebra tractable here, and to explain the method by means of example, consider an
already simplified system in polynomial matrix form, as in Table 3. This particular model may be
obtained via reducing the model in Table 1, by truncatng the surge velocity v and residualizing the
second thru the fourth generalized elastic deflections m; for the aircraft in Ref. 1.

Consider now the solution for one element of the ransfer function matrix, namely

5, . N(s)
Gq-E(S) =BG

Applying Cramer's rule to the model in Table 3 yields
Zy Zy
— —i)e 2 -
D(s) (—’-sVTI + V’r,) IM,F; S+ Fy (s2- Mgs)] (8)

Z Z
- My s +Mﬂ])-[F1qs(s - -\-,f—) +(1+ V—;L)Fhs]

Z Z
+ (52420 0-Fy 4 )s+(en F1q ) e [(s - {,_l%)(sz - Mgs) - (1 + ﬁ)Mus]

Z
N(s) = ViE * {50 [Mg(s2+(28; n-Fy 5 s+ 2Fpp ) + Fy (Mg s +My )]

- ¢]‘5. [Maqus + Flu(sz - I\'IqS)]}

Z .
* Mg o(se[ (s- VT&])(52+(2C1¢01-F1 i)+ ZFyy)) - Flu(\zﬁ:s + %)]
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Zy Zg
- ¢]'50[qus(s - {7—) +(1+ Vr )F, sl}
z,

+ Fyg o lsells- —l)(Mﬂs+M )+ M (\Z,qs+{,—]

- 0y'se[ (s~ V—;:)(SZ - Mgs) - M(1 + V_%)S]}

Also, consider the pumerical solution for the same transfer function obtained via any appropriate

means, or

GMs) _ __135(s + 0.23)(s - 3.4)(s + 4.0)

" s(s2 + 0.88s + 1.6)(s2 + 1.0s + 36.) ©)

5 15 15
Ky sls+sp g 1[5+ (P ls+, <T>(r ]

s[s2 + (2Lw)sps + (@] [s2+ (2Law)g,s + ()]

nss4 + n3s3 + nss2 + ngs
s5 + dgs4 + d3s3 + dos? + dis

One now selects approximate terms, one from D(s) and one from N(s), in (8) which best satisfy

the following two criteria.

1. The literal expressions for the approximate terms must factor into the same structure as
found in the numerical model (poles/zeros). For example, the literal expression for the
approximate term for D(s) must have 2 pair of complex roots plus one root at the origin,
while that for N(s) must have 4 real roots, including one at the origin (see eq. (9)).

2. The numerical factors calculated from those approximate terms should be as close as
possible to the ue numerical factors in (9).

In this example, the approximate terms are selected as the underlined terms in (8) yielding

Z
D(s) = s[s2 + (- -M )s + (—LM 1+ i,—;’_—)Mu)] (10)
°[52+(2§1031-F1nl)s+((o17-F1nl)]
=s[s2 + (2Em)sps + (@)sp] [s2+(2 fm)fls + (E)Z)fl]
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=s(s2 +1.2s + 3.8)(s2 + 0.62s + 35.)

=5+ dysd + d3s3 + dps2+ dis

and
~ z b-[b2-4c)1/2
N(s) = (Mg - 61Fy )sls + (- \—,T%)] [s + (—-Lz;])] [s +
_ R 1.5 1.5 1€
=Ky sls+sp (:f)cf s+ f]](T)q( Hs+ flz(T)q' ]
=13s(s + 0.42) (s = 3.3) (s +4.2)
=Tygst+ N33+ Ns?+ Nigs
where

b (28;-Fy )M, + 0y MgFas
Ms - &1'Fpy

cC= ——J(mlz-Fln )Mﬁ
MBE - q)l'Fl&E

b+ [b2- 4c)1/2
(_:“J_C])]

2

Now, by expanding (9), one can determine the functional dependence of the polynomial

coefficients upon the factors. For example,

d] = (Oﬁ)sp((ﬂz)fl

;e Loe Lo Lo
n1=qu sp(-r)q/ fll(T)Q' flz(T)Q'

(11)

Noting this functional dependence,-expand each coefficient in a Taylor series where the leading

term in the series is taken as the approximate coefficients in (10). For example,

12



—~

-~

3d,
d1=d1+—$Ax+ ..
(12)

~

~ on
nl = n] + _é)_’Ay +
where

Ax = [ (@)sp = (Psp , Lwsp— 2 Lw)sp , (02 — (D), , Loy - Loy, IT

=[ A@sp , 82T W)sp , AWy, , A2Tw), 1T

b 15 L leg 1o Lo Llee
A]/—[Kq; q, ’ sp(T)q; Sp( )q rfq (T)cr (T)q’ ! f] ( q’ _flz(.'f. q’ ]T

1 1.8
—[AI\q ’ Asp( )q/ ’ Afll(Tq/ s

1.8
Ay (DT
2749
Corrections to the approximate factors (i.e. Ax and Ay) are now sought. Using the Taylor
series for each polynomial coefficient such as (12) and neglecting higher order terms, one can

solve for Ax and Ay. This calculation requires the literal expressions for dj - Ei and nj - r—{i
obtained from the nonunderlined term in (8) and the literal expressions for

Bd an
= @45y

obtained from differentiation of expressions obtained similar to (11).
The approximate literal model is finally obtained by summing the approximate factors and
the corresponding corrections. For example,

_NGs)
Gts) = 3G
where
D(s) = s[s? +{ (2§m)5p + A(chn)SP Js+{ (Zﬂ)sp + A( Eﬂ)sp 11
o[s2+ [ @)y, +ARTw), s+ { (@), + Ay, )]
and
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~5 ~ 138
N(s) = (Ry + AR )s[s+(sp<—T->qE + BpOg )]
1.5 1.5 1.8 1.5
ofs+{ fll(:f-)q + Af]l(-'f-)q Nis+ (flz(:l:)q + Ale(:f)q, )]

Example Results

To be obtained now is a reduced order model that is valid in the anticipated crossover
frequency range. Assume the control system requirements are such that this range must be 1 10 10
rad/s. The vehicle discussed previously will be modeled, and the "true” model is taken as that in
Table 1 with four elastic modes. A fourth-order model will be sought based on the observation
that the "true” model has two complex modes in the crossover frequency range.

Two reduced order models will actually be obtained. One model is obtained by truncating
the surge velocity u and pitch angle 6, and employing the frequency-weighted internally-balanced
technique using a band pass filter with unity magnitude in the 1 to 10 rad/s frequency range, and
40 db/dec magnitude roll off on either side of the pass band. Here, truncation of u was necessary
to eliminate an unstable phugoid pole, and runcation of 8 was necessary to eliminate the associated
pole at the origin. The other reduced-order model (an effective fourth-order model due to a
pole/zero cancellation at the origin) is obtained by truncating the surge velocity u (i.e., a short
period approximation), and residualizing the second thru the fourth generalized elastic deflecdons
Mi. Tables 4 thru 6 contain the transfer functions for the original full-order and the two reduced-
order models, while Figures 2 and 3 show the q'/8g and q'/8¢ frequency responses, respectively.

The q'/0g and q'/d¢ frequency-response errors (see Eq. (2)) are simply the distances
between the Bode magnitudes of the "true” model and the reduced-order models in Figures 2 and
3. Observe that the reduced-order models accurately approximate the "true” model in the 1 to 10
rad/s frequency range as desired. Similar results are obtained for the other transfer functions in
Tables 4 thru 6, in that the reduced-order models are highly accurate in the 1 to 10 rad/s frequency
range, as desired. Specifically, the "crossover frequency norm" (E(jw)ks, see Eq. (3)) is 38 for the
muncaton/frequency-weighted internally-balanced model, and 170 for the truncation/residualization
model, for the model units selected.

Discussion of Results
For control synthesis applications, critical features in the q'/dg mansfer function, for

example, are the nonminimum phase zero located near 3.4 rad/s (see Table 6 and Figure 2) and the
lightly damped complex poles near 6 rad/s (see Table 6 and Figure 2). These characteristics have

14



been shown8 to limit the stability robustness of a candidate multivariable control law, based on a
literal singular-value analysis. Also, a critical feature in the q'/d¢ transfer function is the dipole
structure near 3 rad/s and 6 rad/s (see Table 6 and Figure 3). Recall that nonminimum phase zeros
limit the allowable loop gain and yield undesirable initial time-response behavior. Lightly damped
complex poles can also limit stability robustness, as well as contribute to undesirable 1ime
responses. Dipole structures can also critically affect closed-loop stability.

To expose the physics behind these critical characteristics, an approximate literal model is
developed from the truncation/residualization model given in Table 3. Note a higher order model
could conceivably be used. As we shall see, however, this is not required here to obtain valid
results.

Table 7 lists the approximate literal expressions for the factored transfer functions where
the underlined terms were selected as the approximate terms, and the remaining terms are the
corrections. Table 8 also contains the transfer functions obtained from the literal expressions in
Table 7, while Figures 4 and 5 show the q'/8g and q'/8¢ frequency responses, respectively, for
this simplified model along with the "true"” model. Observe that the literal model accurately
approximates the "true" model in the 1 to 10 rad/s frequency range. By comparing similar results
for the other transfer functions in Tables 4, 6, and 8, one observes that the literal approximations
are quite accurate.

Now to expose the parameters affecting the nonminimum phase zero in the q'/Og transfer

&
function (see Table 6), consider the expression for fll(%)q:E appearing in Table 7, or

fll(T)q’ = 2 ZFlsg (13)

1 SE b- ['bz- 4C]1/2 N quMéE

with the following numerical values:

M, =-0.830 1/s M55=—5'12 1/s2 qu=—78.4 1/s
F, o -866.1/s2 (mlz-F]m) =3481/s2 (Zt_,lcol-Flm)s =0.6211/s
¢;'(x) =0.0210 ft/ft b=09121/s c=-13.61/s2
e . . b - [b2 - 4¢c}172
As seen from Eq. (13), the zero location is primarily a function of the first term 5 ,

which in turn is primarily a function of the parameter ¢ as given in Table 7, or
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(UHLF]“])MBE
. MBE ) Q)]'(X)F]&E

(14)

Evidently, the key parameters are the elevator control derivatives Mgg and Fig, elastic mode

structural frequency and aerodynamic stiffness (wlz-Flm), and the elastic mode slope ¢,'(x).

From the denominator in Eq. (14), it is apparent that the nonminimum phase characteristic is
directly related to the control power affecting the rigid-body and elastic pitch motions (i.e., "up

elevator" induces rigid-body "pitch up" and elastic "pitch down"). Further, it can be seen how the
pitch-rate sensor location, thru ¢;'(x), and the aeroelastic mode frequency (w12-F1m) affect the

nonminimum phase characteristcs.
Auention is now turned to the lightly damped complex poles in the q'/8g transfer function
(see Table 6). The expression for the damping term (ZC_,(:L))f1 appearing in Table 7 is

Z, yd
— .
Mn,qu + [VT, +(1+ VT))MT\I]FIG

(QLw), = (2L;04-Fy5 ) + (15)
= 0.62 + 0.35
with the following numerical values:
Zq. L 551/s2
1+ VT)= 1.03 Y =-0.00267 1/s M‘n,=’o'06:’5 1/s
1 1
M,il=—0.00390 1/s F]°=—1,04O 1/s2 F1q=—78.4 1/s

(@2-Fp)=3481/s2 (2410~ Fy5)=06211/s

As seen from Eq. (15), the low damping is primarily due to the low elastic mode structural and
aerodynamic damping (2L, - F1§ ). However, note that approximately 1/3 of the total damping

originates from other sources, such as aerodynamic coupling between the rigid and elastic degrees

z
of freedom (i.e, My Fy %LF]G, 1+ TOM; F).
. 1 H

Finally, consider the dipole structure in the q'/8¢ transfer function (see Table 6). The
dipole consists of the lightly damped complex poles [s2 + Cw)s + (u)z)fl] and lightly damped

complex zeros [s2 + £, (2Cw) Z?s + fl((oz) Z,C]. The relative location of the pole and zero along the jw
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axis is determined primarily by the difference between the natural frequency terms ((1)2)fl and

f]((l)z) Z.C appearing in Table 7, or

z
—9
T+ Mo B,

(@), (@) = (@2Fp) + (16)

z
L]
My, + 0y (x)(1 + JVT))MQ

(mlz—F]T\))Mﬁc }
Ms, - 01'00F; &'
= 35. 4+ 2.0
- { 2.0 - (-6.5) }
with the following numencal values:
Zq. 2 51/82

1+ VT,)= 1.03 My=-3331/s M.,h=—0.065:> 1/s
Mz, =0.809 1/s2 Fy =-1,0401/s’ Fip =—631.1 /s?

(,2-Frq)=3481/s2  ¢1'(x) =0.0210 ft/ft

As seen from Eq. (16), the second and third terms approximately cancel, leaving the dipole

structure primarily a function of the elastic mode structural frequency and aerodynamic stiffness

(w2 - Fln,) , stability derivatves %— , My, and Mm , and the elastic mode slope ¢,'(x). For
1

fixed stability derivatives L , My, and M, , it is apparent the pole location is directly related to
Vr a , PP
1

the elastic mode structural frequency and aerodynamic stiffness, while the zero location is directly

related to the q' sensor location thru the elastic mode slope.

Conclusions

The importance of a dynamic model's validity in the (multivariable) region of crossover
was underscored, and three model simplification techniques capable of delivering valid models (in
this sense) were presented. Classical truncation and residualization were shown to be capable of
yielding a good low-order model, but a newer numerical procedure known as the frequency-
weighted balanced technique led to superior results in this case.

A literal simplified model was also shown to yield excellent results, and the procedure was
presented herein. This approach, furthermore, was shown to lead to closed-form analytical
expression for the key dynamic characteristics, and hence expose the fundamental causes for these
characteristics. ' . '
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Jable 2. Frequency Weighted Internally Balanced Reduction

Given: System state space description A, B, C, D and weighting

filter state space description A,,, B,,, C,,
Find: rib order system

Step 1: Solve for X and Y from

A BC,[ X X7 [ X X[ AT 0 0 0

[0 Aw}[xm Xzz}+lile Xzz]{CwTBT AwT:l+[0 BwaT]=O

AT 0 1Y Y1 [ Y Y1l A BC, ccT  CTDC,,
[CWTBT AwT][Yzz Y22]+[Y21 YzzM 0 Ay ]J{CWTDTC CwTDTDCw]=0

Step 2: Find T and T where XY=TE2T", T=[T, T, ], T"=[U,U,_]

- [2,2 0 }
0 I,/

2= diagvevy) i=1,.,1
Zhgl= diag(veVe) i=r+1,.,n
Ve Vo, 2 -2 Ve Vo, 2 0
Step 3: b order system is
A, =UTAT,
B,=U,TB
G, =CT,
D,=D
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Table 4. Transfer Functions For The True Model

Ggi(s) = 525(s+0.0089)(s+0.0204j1.7)(s+0.364j11)(s+1.0%j11)(s-1.54j12)(s+3.1%j14) /D(s) (ft/s2/rad)
Gz?(s) = 8.0s(s+0.051)(s+0.20)(s-3.6)(s+4.0)(s+0.36ij11)(s+2.8ﬁ13)(s-0.57ij13)/D(s) (rad/s/rad)
Ggf(s) = -240s(s+0.0081)(s-0.174j1.8)(s+0.904j4.1)(s+0.23411)(s+0.36+j11)(s+2.61j13) /D(s) (ft/s2/rad)

Gg,c(s) = 165(s+0.055)(s+0.12)(s+0.60%j2.9)(s+0.264j11)(s+0.36j11)(s+2.64§13) /D(s) (rad/s/rad)

where

D(s) = (s-0.033)(5+0.043)(s+0.45%j1.2)(s+0.44}6.0) (5+0.2211)(s+0.36j11)(s+2.6j13)



Table 5. Transfer Functions For The Truncated /FWIB Model

Gai(s) = 52(s+0.0204j1.7)(s-1.24j14) /D(s) (ft/s2/rad)
GZ.E(S) = 15(s+0.088)(s-2.9)(s+3.9) /D(s) (rad/s/rad)
GaS(s) = 240(s-0.184j1.6)(s+0.924j4.1)/D(s) (ft/s?/rad)

GZ,C@) = 15(s+0.090)(s+0.70+j2.9)/D(s) (rad/s/rad)

where

D(s) = (s+0.46%j1.2)(s+0.44+j6.0)



Table 6. Transfer Functions For The Truncated/Residulization Model

Gai(s) = 465(s+0.01441.7)(s-1.74j14) /D(s) (ft/s?/rad)
G H(s) = 135(5+0.23)(s-3.4)(5+4.0) /D(s) (rad/s/rad)
Gas(s) = -240s(s-0.1741.8)(s+1.05j4.2)/D(s) (ft/s2/rad)

Gz,c(s) = 145(s+0.16)(s+0.664j3.0) /D(s) (rad/s/rad)

where

D(s) = s(s+0.44%j1.2)(s+0.50%j6.0)
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Table 8. Transfer Functions For The Approximate Literal Model

GRi(s) = 465(s+0.1342.0)(s-1.9514)/D(s) (£t/s2/rad)
Gg?(s) = 135(s+0.20)(s-3.5)(s+3.9) /D(s) (rad/s/rad)
GaX(s) = -2405(s-0.112j1.8)(5+0.7244.0)/D(s) (£¢/s2/rad)

GZ,C(S) = 14s(s+0.16)(s+0.74%j2.8)/D(s) (rad/s/rad)

where

D(s) = s(s+0.452j1.2)(s+0.486.0)
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Figure 1. Generic Feedback Configuration
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